If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+32x-768=0
a = 6; b = 32; c = -768;
Δ = b2-4ac
Δ = 322-4·6·(-768)
Δ = 19456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19456}=\sqrt{1024*19}=\sqrt{1024}*\sqrt{19}=32\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32\sqrt{19}}{2*6}=\frac{-32-32\sqrt{19}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32\sqrt{19}}{2*6}=\frac{-32+32\sqrt{19}}{12} $
| -4/7x+12/7=7/4x-13/2 | | 2x—(x-1)-1=2 | | -3(-11)+2y=8 | | -3(11)+2y=8 | | 10x-18=7x+4 | | (2x+5)=(4x-3) | | 6x+29=0 | | -1+14-20=x | | 5x+12=40-8x | | 3x²+5x+7=9x+7 | | 8x+16x^2=-52 | | 2z^2+12z+9=0 | | 4=3x^2-13x | | 6a-18-(3a)-1=4a-2 | | F(x)=-2+3x | | 4(a-6)-6=6 | | 2k^2-3k-20=0 | | 4(a-8)+6=6 | | 3y+15-4y-8=-2y+10 | | 8x+6+2=-4x+1 | | 3n-7=38 | | 2(m+5)=6m-8 | | −5x+56=9x | | 2x-7=40-3x | | −5x+56=9 | | 3y-1/4=2y-3/6 | | 38(7-2.5x)=12(2x-11)+52.9 | | 2x+20=4x-17 | | (x+2)(x-4)=x²-1 | | 2(m-4)-3=3(m-7) | | 60*x=80*(X-80/60) | | 9x-33=6x-6 |